Part T #### DYNAMICS OF FLEXIBLE MULTI-BODY MECHANISMS AND MANIPULATORS An Overview Steven Dubowsky Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, MA # INTRODUCTION - FLEXIBILITY CAN BE A MAJOR LIMITATION TO THE PERFORMANCE OF HIGH PERFORMANCE CONVENTIONAL Α. MACHINE SYSTEMS. - 1. Noise - 2. VIBRATION 3. WEAR - 4. PREMATURE FAILURES - 5. DESTABILIZE CONTROL - B. THE CURRENT STATE-OF-THE-ART OF ROBOTIC MANIPULATORS IS LIMITED BY THE EFFECTS OF SYSTEM FLEXIBILITY. THE STATE-OF-THE-ART OF THE ROBOT DYNAMICS AND CONTROL[†] *NOW: (CURRENT COMMERCIAL SYSTEMS) *IN 5 YEARS (LABORATORY DEMONSTRATED) *IN 10 YEARS (CURRENT RESEARCH ISSUES) † This chart defines the time frames for the review of the state of the art for robotic systems which follow and provide the basis for the future projections ## NOW 1. ROBOTS ARE: - * Not Robots - * Individual Arms on Fixed Bases, or - * Simple Guided Vehicles - 2. MECHANICAL DESIGN: - * Heavy, Rigid and Slow - 3. SENSORS: - * Simple Joint Transducers - * Primitive 2-D Vision - * Rudimentary Force Sensors - 4. ACTUATORS: - * Heavy and Low Power * Troublesome Transmissions - 5. END EFFECTORS: Binary - * With Simple Sensors - * Special Purpose Tools - 6. MOTIONS: - * Not Dynamic "Quasi-Static" - * Speeds Below Structural Resonances - 7. CONTROL: - * Primitive Linear Joint Control - * Low Performance - * No Absolute Position Accuracy * Only Static Force Control - * No Dynamic Trajectory Planning # IN 5 YEARS - 1. ROBOTS ARE: - * Still Not Robots - * 2 or 3 Fixed Arms Working Together - * Some Mobility - 2. MECHANICAL DESIGNS: - * Rigid, Light and Faster - 3. SENSORS: - * Still Mostly Joint Transducers * Some VLSI 2-D Vision - * Simple End-Point Sensors - 4. ACTUATORS: - * Lighter Weight and Improved * Direct Drives - 5. END EFFECTORS: - * Some Controlled Mobility - * Position, Force and Limited Tactile Sensing - * Commercial Tools for Some Tasks - 6. MOTIONS: - * Control Permits "Dynamic" Performance - * Speeds Below Structural Resonances - 7. CONTROL: - * Combined Position and Force - * "Work-Space" Rather Than of the Joints * Insensitive to Environmental Changes - * Optimal Dynamic Trajectory Planning ## IN 10 YEARS - 1. ROBOTS MAYBE: - * Robots - * Coordinated Multiple and Mobile Arms - * Self-Contained with Walking Ability - 2. MECHANICAL DESIGNS: - * Very Light, flexible and fast - 3. SENSORS: - * New Sensor Technologies for Control - * High Speed 3-D Vision - * High Resolution Tactile Sensors - 4. ACTUATORS: - * High Peformance - * New Technologies Muscle Types - 5. END EFFECTORS: - * Sensitive and Dexterous Hands - * Intelligent Motion and Sensing - * Intelligent Tools for Specific Tasks - 6. MOTIONS: - * Dynamically Tuned - * Flexibility Exploited for Performance - 7. CONTROL: - * Issues of Control and Performance in Most Cases Will Move to a Higher Level. - * Questions of Control of Individual Robot Actions Will be Transparent.